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Abstract

Disease transmission is notoriously heterogeneous, and SARS-CoV-2 is no exception. A skewed distri-
bution where few individuals or events are responsible for the majority of transmission can result in ex-
plosive, superspreading events, which produce rapid and volatile epidemic dynamics, especially early or
late in epidemics. Anticipating and preventing superspreading events can produce large reductions in
overall transmission rates. Here, we present a compartmental (SEIR) epidemiological model framework
for estimating transmission parameters from multiple imperfectly observed data streams, including re-
ported cases, deaths, and mobile phone-based mobility that incorporates individual-level heterogeneity in
transmission using previous estimates for SARS-CoV-1 and SARS-CoV-2. We parameterize the model for
COVID-19 epidemic dynamics by estimating a time-varying transmission rate that incorporates the im-
pact of non-pharmaceutical intervention strategies that change over time, in five epidemiologically distinct
settings—Los Angeles and Santa Clara Counties, California; Seattle (King County), Washington; Atlanta
(Dekalb and Fulton Counties), Georgia; and Miami (Miami-Dade County), Florida. We find the effective
reproduction number RE dropped below 1 rapidly following social distancing orders in mid-March, 2020
and remained there into June in Santa Clara County and Seattle, but climbed above 1 in late May in Los
Angeles, Miami, and Atlanta, and has trended upward in all locations since April. With the fitted model,
we ask: how does truncating the tail of the individual-level transmission rate distribution affect epidemic
dynamics and control? We find interventions that truncate the transmission rate distribution while partially
relaxing social distancing are broadly effective, with impacts on epidemic growth on par with the strongest
population-wide social distancing observed in April, 2020. Given that social distancing interventions will
be needed to maintain epidemic control until a vaccine becomes widely available, “chopping off the tail”
to reduce the probability of superspreading events presents a promising option to alleviate the need for
extreme general social distancing.
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Introduction1

In the face of emerging epidemics with limited pharmaceutical options for treatment and prevention of2

infection, non-pharmaceutical interventions such as social distancing are critical for slowing epidemic3

growth. Shelter-in-place and other social distancing orders have helped to slow the pace of the COVID-194

pandemic, reducing the effective reproduction number RE—or the number of secondary infections pro-5

duced by each infected person—to one or below in most places. In doing so, social distancing has effec-6

tively kept most regional healthcare systems operating under maximum capacity. However, after only a7

few weeks of declining numbers of daily cases due to an RE at or below one, most state and county gov-8

ernments in the United States have begun relaxing social distancing orders, citing their major economic9

impacts. In order to avoid epidemic resurgence, it is vitally important that governments employ long-term10

strategies that maintain epidemic control as economic reopening commences.11

One obstacle to designing effective long-term strategies is a notoriously heterogeneous transmission12

process. It is now widely recognized that the minority of infections generate the majority of secondary cases,13

leading to the so-called 20-80 rule in epidemiology (the rule-of-thumb that 20% of people generate 80% of14

cases)1. Work on SARS-CoV-1, measles, and other respiratory viruses suggests that this skew in secondary15

cases is even larger2. This heterogeneity gives rise to events in which a single infected person transmits a16

disease to dozens or hundreds of people—called superspreading events—which have played an important17

role in the COVID-19 pandemic3,4,5,6,7. Indeed, the frequency of asymptomatic and presymptomatic trans-18

mission, potential disconnect between infection and clinical presentation8, and potential transmission via19

direct contact, aerosols, and surfaces9,10 are all features of SARS-CoV-2 that tend to promote superspread-20

ing. As local and national governments search for viable exit strategies from shelter-in-place, a critical21

question is how effective curtailing superspreading events could be in controlling epidemic spread.22

Practically, one strategy to help prevent superspreading is to prohibit medium to large indoor gatherings23

such as exercise classes, sporting events, concerts, and weddings for an extended period after allowing24

smaller and lower-risk activities to resume. From a modeling standpoint, predicting the effects of this25

straightforward intervention is difficult for two reasons: 1) local epidemiological dynamics are changing26

with evolving intervention strategies; and 2) information may not be available to parameterize detailed27

models of disease spread through heterogeneous populations. Despite these difficulties, it is important to28

consider some individual-level heterogeneity in transmission because model analyses of mean transmission29

rates alone may over-estimate the effectiveness of interventions, overlook potentially effective interventions30

that act on the heterogeneity within populations, overlook potentially explosive resurgences, and poorly31

predict the final epidemic size2,7.32
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Studies of superspreading often empirically estimate secondary case distributions from recorded trans-33

mission chains and/or using branching process models2,5,6,11. These studies estimate a dispersion param-34

eter, k, that describes the variance in secondary cases based on a Negative Binomial distribution, where35

smaller values indicate more heterogeneity and skew and large values approach a Poisson distribution. Es-36

timated k values for SARS-CoV-2 remain uncertain, but are thought to range from 0.04 - 0.36,7,11,12, similar37

to the estimate of 0.16 for SARS-CoV-12, which we use for this analysis. These empirical and branching38

process approaches are ideal for characterizing heterogeneity in secondary cases, but not for projecting epi-39

demic trajectories through time, without being further embedded in a compartmental or network modeling40

framework.41

Here, we present a mechanistic susceptible, exposed, infectious, removed (SEIR) model that uses data42

on cases, deaths, and mobility for parameter estimation, incorporates heterogeneity in transmission rates,43

and is realistic enough to be useful for scenario exploration but simple enough to be adapted to a wide44

range of settings. The key innovation in our model is in using the average of Gamma-distributed individ-45

ual transmission rates at each time step, as supported by previous work on secondary case distributions,46

to generate the distribution of population-average transmission rates. This formulation allows us to both47

generate more realistic variation in trajectories than SEIR models that assume a single average transmis-48

sion rate, and explore and quantify the impact of altering individual-level transmission distributions on49

population-level dynamics without more detailed information on contact networks, age structure, or other50

social information.51

The model, with accompanying open-access code, can be used to fit to any county in the U.S. using52

publicly available data; here we focus on five contrasting epidemiological settings—Seattle (King County),53

Washington; Los Angeles (Los Angeles County), California; Santa Clara County, California; Atlanta (Dekalb54

and Fulton Counties), Georgia; and Miami (Miami-Dade County), Florida. For each location we estimate a55

time-varying effective reproduction number, RE , which represents the average number of secondary infec-56

tions produced by each infected person, and is an important (though imperfect7) metric of epidemic control.57

Using each fitted model, we truncate the individual-level transmission rate distribution and stochastically58

simulate epidemic dynamics into the future, representing a scenario where high-risk events are eliminated59

but smaller and lower-risk activities are allowed to resume. We investigate the absolute impact of this su-60

perspreading prevention strategy on epidemic control, and compare its impact on epidemic dynamics (and61

RE) to test-and-isolate and shelter-in-place interventions. Using this comparison we highlight exit strate-62

gies from shelter-in-place that are expected to reduce both epidemic growth (i.e., keep RE below one) and63

the probability of explosive resurgence.64

3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2020. .https://doi.org/10.1101/2020.06.30.20143115doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.30.20143115
http://creativecommons.org/licenses/by/4.0/


Methods65

Model Structure66

We developed a compartmental model using an SEIR (Susceptible, Exposed, Infectious, Recovered) frame-67

work to model COVID-19 transmission, which was first described in Childs et al.13. Our model divides68

the population into the following classes: susceptible (S); exposed but not yet infectious (E); infectious69

and presymptomatic (IP), asymptomatic (IA), mildly symptomatic (IM), or severely symptomatic (IS); hos-70

pitalized cases that will recover (HR) or die (HD); recovered and immune (R); and dead (D). We assume71

an underlying, unobserved process model of SARS-CoV-2 transmission described by equations 1–10 and72

shown in Figure S1, where each term dX,Y denotes the transition from compartment X to Y . Transitions73

between compartments are simulated as binomial (B) or multinomial (M) processes. We use an Euler ap-74

proximation of the continuous time process with a time step of 4 hours. To produce more realistic latent and75

infectious periods we divide each infectious class and the exposed period into multiple sub-stages, which76

results in Erlang distributed periods within stages14,15. Specifically, we use three sub-stages for the exposed77

class, seven sub-stages for the asymptomatic infectious class, two sub-stages for the presymptomatic infec-78

tious class, five sub-stages for the mildly symptomatic infectious class, and five sub-stages for the severely79

symptomatic class. We translate durations into rates for our model with sub-classes and a Euler approx-80

imation using the method described in He et al.16. Equations 11–18 describe in detail the stochastic rates81

used to approximate the transition terms in equations 1–10. Parameters are defined in Tables 1, 2, and 3.82
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dS

dt
= −dS,E (1)

dE

dt
= dS,E − dE,IA − dE,IP (2)

dIA
dt

= dE,IA − dIA,R (3)

dIP
dt

= dE,IP − dIP ,IS − dIP ,IM (4)

dIM
dt

= dIP ,IM − dIM ,R (5)

dIS
dt

= dIP ,IS − dIS ,HR
− dIS ,HD

(6)

dHR

dt
= dIS ,HR

− dHR,R (7)

dHD

dt
= dIS ,HD

− dHD,D (8)

dR

dt
= dIA,R + dIM ,R + dHR,R (9)

dD

dt
= dHD,D (10)

By including asymptomatic and presymptomatic individuals, we are able to track “silent spreaders”83

of the disease, which have been shown to contribute to COVID-19 transmission17,18. Mildly symptomatic84

cases are defined as those people that show symptoms but do not require hospitalization. We assume that85

all severely symptomatic cases will eventually require hospitalization and that no onward transmission86

occurs from hospitalized individuals.87
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dS,E ∼ B

(
S, 1 − exp

(
−βt

κAIA + κP IP + κMIM + κSIS
N

dt

))
(11)

dE,E

dE,IA

dE,IP

 ∼ M

E,


exp(−γdt)

α(1 − exp(−γdt))

(1 − α)(1 − exp(−γdt))


 (12)

dIA,R ∼ B(IA, 1 − exp(−λAdt)) (13)
dIP ,IP

dIP ,IM

dIP ,IS

 ∼ M

IP ,


exp(−λP dt)

µ(1 − exp(−λP dt))

(1 − µ)(1 − exp(−λP dt))


 (14)

dIM ,R ∼ B(IM , 1 − exp(−λMdt)) (15)
dIS ,IS

dIS ,HR

dIS ,HD

 = M

IS ,


exp(−λSdt)

δ(1 − exp(−λSdt))

(1 − δ)(1 − exp(−λSdt))


 (16)

dHR,R ∼ B(HR, 1 − exp(−ρRdt)) (17)

dHD,D ∼ B(HD, 1 − exp(−ρDdt)) (18)
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Table 1: Parameter point estimates.

Parameter Value Description Estimates and Sources
κP , κM , κS 1 Relative infectiousness of presymptomatic, mild symp-

tomatic, and severe symptomatic
Assumed

γ 3.5 days Preinfectious period One meta-analysis19 found a mean incubation pe-
riod of 5.8 days, another found a median of 5.1
days20. We use a shortened duration because we
assume 2 days of presymptomatic transmission

λP 2 days Presymptomatic duration Range of 1-3 days21, mean of 3.8 days22, viral shed-
ding estimated to begin 2.3 days prior to symptom
onset23, many articles find presymptomatic infec-
tion is likely but do not estimate duration24,25,26,27

λA 7 days Infectious period for asymptomatic infections Mean seroconversion after 7 days28

λS 5 days Time from symptom onset to hospitalizations (severe
cases)

Mean of 5.5 days29, median of 4 days30, mean of 5.6
days31

λM 5.0 days Time from symptom onset to recovery (mild cases) Infectiousness based on viral shedding estimated
to decline substantially within 7 days23,28 *Note,23

takes samples from hospitalized patients; we as-
sume similar viral shedding in mild infections

ρR 13.3 days Time from hospitalization to recovery Mean of 13.332, mean of 20.5131, highly variable by
region33

Table 2: Parameter range estimates that are not location specific

Parameter Lower Bound Upper Bound Description Estimates and Sources
κS 0.4 0.8 Relative infectiousness of asymptomatic in-

fections
0.634, few direct estimates, but many examples of
asymptomatic transmission potential less than, but
potentially close to that of, symptomatic infected in-
dividuals35,36,37

α 0.3 0.5 Proportion of infections that are asymp-
tomatic

Mean of 43.3%38, 44%39

δ 0.1 0.3 Fatality rate among hospitalizations Demographic weighted average that will vary by lo-
cation, see Verity et al.31, 5%40

ρD 13 days 20 days Time from hospitalization to death Mean of 16 days41, mean of 17.8 days31, highly vari-
able by region33

1 − µ 0.025 0.075 Proportion of symptomatic infections that re-
quire hospitalization

Demographic weighted average that will vary by lo-
cation, see Verity et al.31
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Table 3: Location-specific parameter range estimates. Population sizes obtained from the US Census
Bereau42

Parameter Santa Clara
County, CA

Los Angeles
County, CA

Miami-Dade
County, FL

King County, WA Fulton+DeKalb,
GA

Epidemic
Start Date

01-Jan - 05-Feb 01-Jan - 31-Jan 01-Jan - 16-Mar 01-Jan - 04-Mar 01-Jan - Mar-07

Population
Size

1,927,852 10,039,107 2,716,940 2,252,782 1,755,830

The time-varying transmission parameter, βt, describes the average per capita rate of contact between sus-88

ceptible and infectious people at time t, multiplied by the per-contact transmission probability. We modeled89

βt as a function of human movement using the scaling function:90

βt = β0β
θ
m, (19)

which treats βt as an exponentially decreasing function of physical distancing (θ; on a scale of 0-1 where 091

is no physical distancing, and 1 is maximum physical distancing). Here, β0βm is the estimated minimum92

possible transmission rate given minimal human movement (i.e., maximal physical distancing) and thus93

contact rate. To model human movement we use SafeGraph’s “Shelter in Place Index”43, which measures94

the proportion of cell phone devices that are staying home.95

To model individual heterogeneity in SARS-CoV-2 transmission rate, we allow individuals to vary over96

time by modeling an individual’s transmission rate in each time step as a Gamma distributed random vari-97

able with a dispersion such that the sum of an individual’s transmission rates over the duration of their98

infection approximates a Gamma distributed random variable with dispersion equal to previous Negative99

Binomial parameterizations for reproductive number SARS-CoV-1 (k = 0.16)44, which closely approxi-100

mates estimates of overdispersion for SARS-CoV-212,45. Because we model the transmission rates as the101

multiplication of contact rate and infection probability, this heterogeneity implicitly considers both varia-102

tion among individuals in infectiousness and contact rate, and can be thought of as modeling superspread-103

ing periods or events—windows in time when an infected individual has a particularly high transmission104

rate. To incorporate this variation into an average time step βt, we model βt as the average of the transmis-105

sion of all infected individuals at time t. To do so we apply the property of Gamma distributions that the106

mean and variance of N samples from a Gamma distribution with defined rate and scale is itself a Gamma107

distribution with mean equal to that of the original Gamma distribution and variance equal to the variance108

of the original Gamma divided by N . A full derivation of the equivalence between the individual time step109

8
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transmission rate distributions (which we will hereafter refer to with π), the individual infectious period110

transmission rate distributions, and the population-level transmission rate distribution is available in the111

Appendix.112

We assume that observed deaths are a Negative Binomial random variable with a mean equal to to-113

tal new deaths accumulated over the observation period (i.e., one day for this analysis), and a dispersion114

parameter that we estimate. We also assume that daily observed cases are a Negative Binomial random115

variable, but have a mean equal to the daily number of new symptomatic infections multiplied by a daily116

detection probability that we estimate from the data. We model daily detection probability as a monotoni-117

cally increasing logistic function:118

ω

1 + e−m(t−φ) , (20)

where ω is the maximum fraction of symptomatic cases detected, m is the logistic growth rate, and φ gives119

the location of the inflection point (where the probability of detection equals one half of the maximum de-120

tection probability, ω). Because φ can be estimated to be in the future, the probability of detection of an121

infected case in the present can be any value between 0 and ω. We estimate newly observed cases to be122

a fraction of all new symptomatic infections at time t. Though this ignores testing asymptomatic infec-123

tions, any detection of asymptomatic infections will be captured as a higher estimated detection fraction of124

symptomatic infections.125

Fitting the Model126

We use COVID-19 death and case data from The New York Times, based on reports from state and lo-127

cal health agencies (available at https://github.com/nytimes/covid-19-data). Using these data,128

which are available for all counties in the US, and any form of human movement data that can be scaled to129

0-1, our model can be used to fit infection dynamics in any county.130

For computational efficiency, we assumed point estimates for some parameters (Table 1) and sampled131

over uncertainty in others (Tables 2, 3) by drawing 600 sobol sequences, an efficient method for sampling132

input parameters46, across a range of plausible values for each in order to form 600 plausible parameter133

sets. For each parameter set we used the package pomp47 in the statistical programming language R48 to134

estimate the following parameters: β0: transmission rate over an entire infection in the absence of social135

distancing; βm: estimated transmission given zero human movement; E0: number of exposed individuals136

that initiate the epidemic; ω, m, and φ: maximum, slope, and inflection point day of the sigmoidal case137

9

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2020. .https://doi.org/10.1101/2020.06.30.20143115doi: medRxiv preprint 

https://github.com/nytimes/covid-19-data
https://doi.org/10.1101/2020.06.30.20143115
http://creativecommons.org/licenses/by/4.0/


detection function; θd: Negative Binomial dispersion parameter for deaths; and θc: Negative Binomial138

dispersion parameter for cases. We fit all parameters to daily deaths, cases, and mobility in two steps. First,139

for each of the 600 parameter sets we used the mif2 function in pomp with random starting conditions, 120140

iterations and 2000 particles. We then continued to fit the 60 parameter sets with the highest log likelihoods141

for an additional 200 iterations using 2000 particles. Each county took approximately nine hours to fit using142

twenty cores.143

We calculated RE at each time t as estimated βt times the median proportion of the population remain-144

ing susceptible on each day across 300 simulated epidemics, with simulated epidemics that did not reach at145

least a total of 100 infected discarded, times the average infectiousness over an infection (as defined by our146

model structure) using the 10 parameter sets with the largest negative log likelihoods as determined by the147

second fitting step.148

Simulating epidemics under interventions149

Any intervention type, intensity, or duration can be modeled using this framework and open-source code150

(available at https://github.com/morgankain/COVID_interventions) given that it can be writ-151

ten as a function that modifies either human movement or βt (e.g., social distancing or a pharmaceutical152

intervention that reduces the probability of infection). Previously we considered the impacts of various153

social distancing initiatives on epidemic dynamics using a similar model formulation13. Here we consider154

interventions that reduce the skew of the individual time step transmission rate distribution (π), and thus155

the average time-varying transmission rate βt; this is our mathematical representation of reducing highly156

infectious contact periods or events, which for COVID-19 tend to occur in crowded enclosed environments157

(e.g., church choirs and exercise classes). Specifically, we model truncation of the π distribution by assum-158

ing that all samples within the top X% of the π distribution are resampled. To visualize the dynamics of159

interventions, for each location we simulate 300 epidemics from the maximum likelihood estimate across160

the 600 parameter sets. The uncertainty band we plot represents the central 95% range of outcomes seen161

across all stochastic realizations that resulted in epidemics for this parameter set, and thus should not be162

taken as representation of uncertainty in parameter values or model structure.163
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Results164

Epidemic trajectories165

The model produced realistic fits to five contrasting epidemiological settings—King County, Washington;166

Los Angeles County, California; Santa Clara County, California; Fulton and Dekalb Counties, Georgia; and167

Miami-Dade County, Florida (hereafter, Seattle, Los Angeles, Santa Clara County, Atlanta, and Miami).168

Among these locations, we estimated that prior to interventions, R0 ranged between approximately 2 and 4169

(Figure 1). We also estimated that RE dropped below one following shelter-in-place orders in all counties,170

though only briefly in some locations. In particular, in Miami, Los Angeles, and Atlanta RE climbed above171

1 by mid-May and daily cases and deaths have plateaued or continue to grow into June. Though RE172

remained below 1 into at least early June in Seattle and Santa Clara County, as of June 18 RE is ∼1 and173

cases are rising again.174

11

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2020. .https://doi.org/10.1101/2020.06.30.20143115doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.30.20143115
http://creativecommons.org/licenses/by/4.0/


Atlanta, GA Seattle, WA Miami, FL Santa Clara County, CA
D

ai
ly

 c
as

es
D

ai
ly

 d
ea

th
s

Mar Apr May Jun Mar Apr May Jun Mar Apr May Jun Mar Apr May Jun

2000
4000
6000

50
100
150
200

Los Angeles, CA

Mar Apr May Jun

4000
8000
12000
16000

500

1000
1500

1

2

3

4

Mar Apr May Jun

R
e

Reproduction number

0.75

1.00

1.25

Apr 15 May 01 May 15 Jun 01 Jun 15

 

A

B C

Figure 1: Model estimated daily cases and deaths (A), and reproduction number (B, C) for five locations:
Atlanta (red), Seattle (green), Miami (gold), Santa Clara County (blue), and Los Angeles (purple). Los
Angeles is displayed on a different y-axis due to differences in magnitude of reported deaths and cases.
For each county, we show the 10 model fits with the best log likelihoods. Panel C show the same results
pictured in B, but are zoomed in to April 15 - June 18 to better show the dynamics around RE = 1. Black
points are observed daily deaths and reported cases in each county. Solid lines display mean of model
simulated trajectories (A) and mean Re (B, C). Ribbons show the range of estimated Re (B, C) or 95% CIs
over stochastic simulation from each model fit (A). Vertical axes in panel A are square root transformed for
visibility.

Interventions175

As a basis for comparison, focusing on just two locations—Los Angeles and Seattle—if shelter-in-place176

were simply lifted, a second peak would be inevitable in the absence of any non-pharmaceutical interven-177

tions (Figure 2, blue). However, non-pharmaceutical interventions, including continuing shelter-in-place,178

infected isolation with intermediate levels of shelter-in-place, or averting superspreading with intermedi-179

ate levels of shelter-in-place are capable of limiting epidemic growth (Figure 2) and keeping RE near or180

under 1. Here, we consider intermediate levels of shelter-in-place that correspond to mobility levels that181

are an average of baseline mobility prior to social distancing and final mobility levels observed in the last182

week of data. Either an infected isolation strategy that reduces to intermediate levels of shelter-in-place and183

12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2020. .https://doi.org/10.1101/2020.06.30.20143115doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.30.20143115
http://creativecommons.org/licenses/by/4.0/


catches 90% of all mild and severe cases of COVID-19 before they are able to transmit (Figure 2, green), or a184

truncation strategy that similarly reduces to intermediate levels of shelter-in-place but removes the top 1%185

of the individual time step transmission rate distribution (π) with 75% efficiency (Figure 2, purple) are able186

to suppress epidemic growth (and reduce RE to below one) in Los Angeles, CA and Seattle, WA.187
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Figure 2: Maintaining shelter-in-place (SIP; orange), test-and-isolate (green), or superspreading aversion
(purple) strategies over long periods is necessary to prevent a major epidemic resurgence (blue) in each
location where we fit our model (shown here for Los Angeles, CA [A, C] and Seattle, WA [B, D]). However,
continuing SIP at current levels (orange) will lead to an increase in daily cases in both Los Angeles (A) and
Seattle (B). Daily reported cases are shown in (A) and (B) and daily deaths in (C) and (D). For both shelter-
in-place and truncation interventions we assume an intermediate level of mobility (an average of baseline
mobility prior to social distancing and final mobility levels observed in the last week of data). Bands show
95% CI on stochastic simulations of daily cases and deaths for the single maximum likelihood parameter
set. Dates range from February through September of 2020. Vertical axes are log transformed for visibility.

Curtailing superspreading188

Limiting opportunities for superspreading by “chopping off the tail” of the contact rate or infectiousness189

distributions can be highly effective at epidemic control (Figure 2), driving epidemic growth to be negative190

and bringing the average number of secondary cases (RE) below 1. An example truncation intervention is191
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illustrated in Figure 3: because the individual transmission rate distribution, π, over a 4-hour time period192

is so skewed (Figure 3A; see appendix for derivation), truncating the upper 0.1% yields a large reduction193

in the mean and a moderate reduction in the variance of the population-level average transmission rate194

(Figure 3B, shifting from red to blue distribution). A variety of possible truncation strategies exist, including195

eliminating varying proportions of π (e.g., upper 0.5%, upper 1%) with varying levels of efficiency (ranging196

from 50-100%) (Figure S2).197

An alternative measure of the impact of averting superspreading (i.e., truncation interventions) is how198

much general social distancing can be avoided by instead truncating the transmission rate distribution.199

Prior to social distancing orders, the estimated proportion sheltering in place (SIP, for short) ranged from200

∼20-22% across our focal locations (Figure 3C, triangles), indicating the baseline level of mobility. If we201

combine SIP with truncation interventions, a variety of combinations are predicted to provide epidemic202

control (for example, by reducing transmission rates such that RE in a fully susceptible population would be203

1; Figure 3). If the truncation intervention is 100% effective, truncating only approximately the upper 0.15%204

of individual transmission rates, π, (Figure 3A) is effective enough to maintain transmission rates such205

that RE would be 1 in a fully susceptible population, while allowing mobility levels to return to baseline206

(Figure 3C). Alternatively, if truncation interventions are only half as effective, the same 0.15% truncation207

intervention would require moderate-strong social distancing (SIP from ∼30-45%; Figure 3C). The nonlinear208

effects of social distancing and truncation on transmission make the combination of interventions needed209

to maintain epidemic control sensitive to the efficiency and strength of each intervention mechanism.210
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Figure 3: Example of how truncating the individual-level transmission rate distribution, π, (A) affects
the population-average transmission rate (B), and combinations of sheltering-in-place (SIP) and trunca-
tion strategies that reduce RE to one in a fully susceptible population (C). The three panels in C show the
combinations of truncation and SIP that produce an RE of one for three levels of truncation efficiency. (A)
Truncation at the upper 0.1% of π (sampled over a 4-hour time step), in which truncation occurs for all val-
ues above the dashed line. (B) Resulting effect on the population-level average infection rate when there are
1000 infected people currently in the population, where the original distribution is in red and the truncated
distribution is in blue. The distribution is shown over 10,000 simulations for a population characterized by
an individual reproduction number distribution with mean of 2.5 and overdispersion parameter, k = 0.16.
Horizontal and vertical axes in A and B are square root transformed for visibility. In C, the triangles show
baseline SIP in each location and circles show max SIP reached during social distancing. Solid lines indicate
the mean over the ten best fits, and the ribbon is the full range of estimates from these fits.

Superspreading and epidemic resurgence211

Even if the epidemic is brought almost entirely under control (e.g., to within 1-5 infected individuals re-212

maining in the population), epidemic resurgence remains a possibility if interventions wane, allowing RE213

to increase above one. As we show in (Figure 3), many different combinations of SIP and truncation can be214

used to produce the same RE (in Figure 3, an RE of 1); however, epidemic dynamics will vary by combi-215

nation because of the variation in individual time-step transmission rates, π. If RE rises above one because216

interventions are relaxed, the specific combination of SIP and truncation that remains in place will deter-217

mine the resulting dynamics. Here we examine how different truncation interventions will affect epidemic218

extinction probability and the size of epidemic resurgence when it does not go extinct. We compare the full219

effect of truncation interventions (which influence both the mean of the transmission rate distribution and220

its shape) to the effects of truncation when RE is held constant by scaling SIP, reflecting only truncation221

effects on the transmission rate distribution shape (variance, skew, etc.).222
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With few infected individuals and RE > 1, stochasticity and heterogeneity in βt can either lead to ex-223

tinction, moderate resurgence, or explosive resurgence. Keeping interventions in place that remove even224

a tiny percent of the largest βt values can help to avoid the more explosive events (Figure 4). Truncation225

markedly reduces the probability of explosive epidemic resurgence (Figure 4A) both by increasing the ex-226

tinction probability (Figure 4B) and by reducing the magnitude of resurgent epidemics when they do occur227

(Figure 4C). While epidemic size was less sensitive to the number initially infected when resurgences do oc-228

cur (Figure 4C), the stochastic extinction probability was extremely sensitive to the difference between even229

one, three, or five remaining infections (Figure 4B). Much, but not all, of the benefit of truncation comes230

from changing the mean transmission rate (and therefore RE). When RE is held constant by adjusting SIP,231

effects of truncation are more moderate. An increase in efficiency at truncating the top 0.1% of the βt dis-232

tribution noticeably decreases the number of infected 42 days after interventions are relaxed (Figure 4D,F).233

However, because of the need to slightly reduce SIP to hold RE constant under truncation, truncation of234

π marginally decreases the extinction probability of the epidemic, which remains much more sensitive to235

the number initially infected (Figure 4E). The highly stochastic nature of epidemic growth when cases are236

rare, combined with the fact that each truncation leaves behind highly skewed distributions regardless of237

the truncation parameters, results in even 10,000 epidemic simulations producing noisy patterns across238

intervention scenarios. Similar patterns are seen as more of the π distribution is truncated (Figure S4).239

16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2020. .https://doi.org/10.1101/2020.06.30.20143115doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.30.20143115
http://creativecommons.org/licenses/by/4.0/


0

500

1000

1500

0 20 40
Days since intervention relaxation

C
on

cu
rre

nt
 in

fe
ct

io
ns

Efficiency of truncation
0%
60%
100%

60%

70%

80%

90%

100%

0% 25% 50% 75% 100%
Efficiency of truncation

Pr
op

or
tio

n 
of

 e
pi

de
m

ic
si

m
ul

at
io

ns
 e

xt
in

ct

0

500

1000

1500

2000

0% 25% 50% 75% 100%
Efficiency of truncation

99
th

 p
er

ce
nt

ile
 o

f c
on

cu
rre

nt
 in

fe
ct

ed

Remaining infected when
interventions relaxed

1
3
5

Truncation with no shelter−in−place adjustment, resulting in variable mean

0

500

1000

1500

0 20 40
Days since intervention relaxation

C
on

cu
rre

nt
 in

fe
ct

io
ns

Efficiency of truncation
0%
60%
100%

60%

70%

80%

90%

100%

0% 25% 50% 75% 100%
Efficiency of truncation

Pr
op

or
tio

n 
of

 e
pi

de
m

ic
si

m
ul

at
io

ns
 e

xt
in

ct

0

500

1000

1500

2000

0% 25% 50% 75% 100%
Efficiency of truncation

99
th

 p
er

ce
nt

ile
 o

f c
on

cu
rre

nt
 in

fe
ct

ed

Truncation with shelter−in−place adjustment, resulting in fixed mean

A B C

D E F

Figure 4: Effects of transmission rate truncation on epidemic die-out and explosive resurgence. With
skewed individual variation in transmission rate, relaxing social distancing interventions when infections
become rare (allowing RE to increase above one) may lead to explosive stochastic epidemic resurgence.
Top panels (A-C) show the overall effect of truncation interventions, including effects on both the mean
and shape of the transmission rate distribution, and resulting RE . Bottom panels (D-F) show the effect
of truncation when RE is held constant by rescaling shelter-in-place at the time of intervention relaxation.
Specifically, for a 0% truncation efficiency we simulate epidemic resurgence assuming R0 = 2, which results
in an RE = 2 · S/N at the time of resurgence, which will vary by simulation (where S is the number of sus-
ceptible individuals and N is the total population size). In panels (A-C) as truncation efficiency increases
RE decreases; in panels (D-E) we scale shelter-in-place to retain an average RE = 2 ·S/N across truncations.
Simulations are performed with varying efficiencies of truncation of the top 0.1% of the π distribution. En-
velopes in (A) and (D) show the central 98% of resurgent simulations (across 10,000 total simulations) for
three efficiencies of truncation (0% in orange, 60% in green, 100% in blue). The proportion of epidemic
simulations that go extinct within 42 days of intervention relaxation for thresholds of 1 (red), 3 (gold), and
5 (blue) infected individuals is shown in (B) and (E). The upper 99th percentile of concurrent infections 42
days after intervention relaxation in resurgent simulations for the same thresholds is shown in (C) and (F).

Discussion240

Understanding local epidemiological dynamics of COVID-19—and the impact of heterogeneity on those241

dynamics—remains a challenge due to both limited and imperfect data in most regions and ever evolving242
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interventions and adherence. Reported cases are only a small fraction of all infections, and the propor-243

tion of symptomatic cases that are detected remains highly uncertain and variable over space and time.244

Our approach takes an important step toward capturing locally-specific epidemic dynamics and the im-245

pact of heterogeneity across settings by providing a platform (including a mathematical model and open246

access code) for estimating time-varying transmission rates (βt) from death, mobility, and imperfectly ob-247

served case report data, all of which are publicly available. The model can estimate epidemic dynamics and248

transmission rates over time across epidemiological settings that vary in population size, demography, and249

control. By incorporating individual variation in contact rates (or, equivalently, infectiousness) into time250

step transmission rate distributions, we incorporate some of the known effects of heterogeneity without re-251

quiring detailed information on population mixing, structure, social networks, or movement patterns. We252

find that control measures in March of 2020 rapidly brought the average reproduction number—RE—from253

∼2–4 to below 1 in all locations we considered in early April. However, as of June 18, RE has once again254

drifted above one in all of these locations except possibly in Seattle, WA and Santa Clara County, CA, where255

it remains unclear if it is greater or less than one.256

Non-pharmaceutical interventions will be necessary to control COVID-19 in all settings until better257

pharmaceutical options (in particular, effective vaccines) are widely available. Social distancing in the gen-258

eral population is effective but costly: it is a blunt and imprecise tool. The social and economic necessity of259

relaxing social distancing demands safe exit strategies based on more precise, targeted interventions to re-260

duce transmission. Testing and isolating symptomatic people, combined with contact tracing, remains the261

gold standard intervention for limiting onward transmission as social distancing is lifted, but it is expensive262

and capacity remains limited in many settings. Our model shows that it is possible to target interventions263

even without precise information on specific population mobility, mixing, and infectiousness patterns, by264

limiting just the most high-risk activities, such as large gatherings and indoor events that have many close265

contacts. How much can be gained from these common sense interventions that reduce or eliminate oppor-266

tunities for superspreading while allowing smaller and safer activities to resume? We find that these trun-267

cation interventions, which eliminate the upper percentiles of contact rates in the population, and thereby268

transmission rates, can be highly effective at maintaining epidemic control (Figure 2), particularly when269

combined with mild to moderate social distancing (Figure 3). Importantly, even after epidemic control is270

achieved and case numbers drop very low, “chopping off the tail” can provide powerful insurance against271

explosive resurgence after social distancing interventions are otherwise lifted (Figure 4).272

What does “chopping off the tail” mean in practical terms? Five types of factors tend to promote su-273

perspreading: (1) high rates or intensity of contact between people or with surfaces; (2) large aggregations274

of people; (3) poorly ventilated physical environments, especially indoors49; (4) highly infectious individ-275
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uals; (5) highly susceptible recipient population4,6,50. Many settings where SARS-CoV-2 superspreading276

has occurred—including nursing homes26, exercise classes, bars and restaurants49, funerals, churches51,277

meat-packing plants52—combine multiple risk factors. For example, choir practices combine high densities278

of people, a high-risk activity (singing)53, and potentially poorly ventilated indoor spaces; long-term care279

facilities combine mobile, high-contact caregivers with highly vulnerable residents, often in high-density280

indoor spaces. Some superspreading events may be easier to eliminate than others. Clearly, healthcare281

and long-term care facilities serve critical functions despite their high-risk nature, and taking all possible282

steps for decontamination and personal protection in these facilities is critical to mitigate this risk50. On283

the other end of the spectrum, voluntary, large, indoor events that are mainly for entertainment and could284

be postponed—gyms, clubs, sporting events, concerts, large lectures—may be the most viable option to285

reduce superspreading and “chop off the tail” of the contact rate distribution54. While these common sense286

interventions are not novel suggestions6, and are already part of reopening plans in almost all locations,287

our work allows a direct comparison of how much general social distancing is avoided by eliminating a288

fraction of these high-risk events (Figure 3). Truncation strategies are even more desirable in light of their289

effectiveness at preventing explosive resurgence after controls are otherwise lifted (Figure 4). Mapping ac-290

tual event types onto the contact rate distribution to determine how particular superspreading reduction291

policies would affect control remains an important next step. Importantly, associating superspreading with292

events and locations, rather than specific people, can avoid the stigma sometimes associated with being293

identified as a superspreader4.294

The impact of truncation interventions is two-fold. First, removing the upper tail of the individual295

transmission rate distribution reduces the population-level mean, often dramatically (Figure 3A,B). If the296

mean transmission rate already placed RE near 1 (for example, due to other interventions), then additional297

truncation could be enough to cross this critical threshold. However, most intervention strategies that bring298

RE to 1 already include prohibiting large gatherings, especially indoors, so additional truncation may not299

be possible within the context of first-wave interventions. However, truncation also acts on the variance300

and skew of the transmission rate distribution, though these effects are smaller than the effect on the mean301

(Figure 4D-F compared to A-C). Given that super-spreading events are particularly dangerous when cases302

are few (in the early or late phases of the epidemic)2, sustained truncation interventions could be extremely303

important for preventing explosive stochastic re-emergence when low case numbers allow general social304

distancing to be lifted (Figure 4). In this scenario, resurgence remains rare (Figure 4B) but possible because305

individual variation in transmission rates is large; most of the time infectious people transmit to few others,306

but occasionally someone infects dozens (Figure 4A), quickly overwhelming testing, contact tracing, and307

isolation efforts. Sustained truncation dramatically reduces the probability of explosive resurgence, and308
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constrains incipient transmission chains to be smaller and more manageable.309

One limitation on understanding the effect of heterogeneity in transmission in particular locations is310

the challenge of estimating epidemiological parameters from noisy and imperfect data: necessarily a bal-311

ancing act between model simplicity and complexity. Here, we rely on metrics of heterogeneity previously312

estimated for SARS-CoV-1 and SARS-CoV-22,12,45 instead of estimating them directly from data; we focus313

our parameter estimation on the mean of the transmission rate distribution. Heterogeneity in contact rates314

or infectiousness, and the resulting distributional variance and skew, may vary based on local patterns of315

movement, contact, behavior, and population demography. This heterogeneity can have important conse-316

quences: in some cases epidemics with low mean R0 can actually infect a larger proportion of the popula-317

tion than epidemics with higher meanR0—as was the case for the 1918 influenza pandemic as compared to318

the 2014 Ebola outbreak—due to the heterogeneity in transmission rates, as described by higher moments of319

the secondary case distribution7. The true epidemiological parameters in any given location, and the extent320

of our uncertainty in these parameters, also remain unknown because of the computational challenges of321

parameter estimation given the limited information contained in noisy case, death, and mobility data. For322

example, depending on how a particular candidate parameter combination weights the noisiness of cases323

and deaths and estimates initial conditions, transmission rate estimates can vary substantially (Figure 1).324

Fully characterizing uncertainty in model structure and parameter values in this context is difficult. Future325

work that directly estimates case ascertainment rates (e.g., through metrics of percentage of tests that are326

positive, age distributions of positive tests, epidemiological contact information on cases, and analysis of327

viral genome sequences55), as well as more detailed mobility and contact network information17 could help328

to improve the model fit to the full shape of the transmission rate distribution.329

First-wave interventions that eliminated large social gatherings and indoor activities and mandated330

mask-wearing and physical distancing have likely already affected the heterogeneity in transmission rates,331

by eliminating many of the high-risk events likely to fall into the upper tail of the distribution. It is impor-332

tant to recognize that as social distancing interventions relax, sustaining such truncation interventions may333

be critical for keeping transmission down to levels manageable through testing, contact tracing, and isola-334

tion. This truncation strategy can potentially reduce the social and economic costs of non-pharmaceutical335

interventions on the general populace, and facilitate sustained adherence by allowing lower-risk activities336

to resume while insuring against a resurgence. Ultimately, an unmitigated epidemic, whether as a first337

or second wave, would kill thousands to tens of thousands of people in each of the locations we studied,338

reinforcing the point that aiming for population herd immunity through naturally acquired infections is339

not a viable public health strategy. Instead, exit strategies that can sustain epidemic control after shelter-in-340

place orders end, including truncating the transmission rate distribution, will be necessary until an effective341
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vaccine can be developed and widely distributed.342
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Data used in this study are available at: https://github.com/nytimes/covid-19-data.344

Code used to produce the results in this study are available at: https://github.com/morgankain/345

COVID_interventions.346
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Appendix366

Derivation of the population-level βt distribution367

In heterogeneous populations, the expected number of secondary infections caused by a particular indi-
vidual (or the individual reproductive number, ν) can be modeled as a negative binomial random variable
with mean R0 and overdispersion parameter k 2,6,56, i.e. ν ∼ NB(k, k

R0+k
). This is equivalent to modeling ν

as a Poisson random variable whose mean is itself a random gamma variable with shape k and scale R0/k,

ν ∼ Poisson(θ)

θ ∼ Γ(k,
R0

k
)

Now let d be the duration of infection for an individual and τ be a time step. Using the fact that k =∑
M k/M , we have

θ ∼ Γ

(
k,
R0

k

)

∼ Γ

∑
d/τ

kτ

d
,
R0

k


∼
∑
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Γ

(
kτ

d
,
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k

)
.

Thus for a constant duration of infection d, we have the individual infection rate over a time step

π ∼ Γ

(
kτ

d
,
R0

k

)
.

When there are N infected individuals, the average infection rate βt over a time step is

βt =
1

N

N∑
i=1

π

∼ 1

N

N∑
i=1

Γ

(
kτ

d
,
R0

k

)
∼ Γ

(
Nkτ

d
,
R0

Nk

)
,

which will have meanR0τ/d and variance R2
0τ

Nkd . Notably, this behaves well with scalings onR0 as a function
of interventions: Let θ be the amount of physical distancing occurring in the population on a scale of 0-1
where 0 is no physical distancing, and 1 is maximum physical distancing, and f be a function mapping
θ to a scaling on R0. Now βt ∼ f(θ)Γ

(
Nkτ
d , R0

Nk

)
= Γ

(
Nkτ
d , f(θ)R0

Nk

)
, which means that properties of the

distribution are preserved with f(θ)R0. Specified as a gamma white noise process ΓWN (σ, µ) which has
mean µ and variance σ2µ, this is equivalently

β ∼ ΓWN

(√
R0

Nk
,
R0τ

d

)
.

There are two main differences between the above derivation and our model formulation (note that for the368

following we assume f(θ) = 1):369
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1. above, the number of new infections in a time step should be

N∑
i=1

Poisson(πi),

where each πi is i.i.d. as Γ
(
kτ
d ,

R0

k

)
. In our model the number of new infections in a time step is

B(S, 1 − exp(−βt(CaIa/N + CpIp/N + CmIm/N + CsIs/N))),

where βt is the average transmission rate over all individuals infectious during that time step and B is370

a binomial process. For large S and small Ia+Ip+Im+Is, this approximates a Poisson distribution for371

the number of secondary cases from each infected individual in each time step and the total secondary372

infections caused by an individual over their infectious period.373

2. above, we assume a constant duration of infection. In our model periods are Erlang distributed given374

our division of stages (e.g. Ia) into n sub stages, each with the same period14,15. This marginally375

increases the variance in the per-infectious period d istribution as we show in Figure S5.376
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Derivation of the relationship between R, Gamma truncation, and the fraction of individuals sheltering377

in place378

Let d be the average duration of infection, τ be a time step, θ be the proportion of the population sheltering379

in place, and Xp,η be a random variable X with right truncation, where truncation occurs at the p-th per-380

centile, with probability η. Suppose that in a given time step we truncate the individual infection rate (π)381

over a time step at the p-th percentile with probability η. Then the reproduction number is382

R = E

[
d

τ
βt

]
R = E

[
d

τN

N∑
i=1

πp,η exp (log(βmin)θ)

]

R =
βθmind

τN

N∑
i=1

E[πp,η]

R =
βθmind

τ
E[πp,η]

R =
βθmind

τ
(ηE[πp,1] + (1 − η)E[π1,1])

β−θ
min =

d

Rτ
(ηE[πp,1] + (1 − η)E[π1,1])

−θ log(βmin) = log(d) − log(R) − log(τ) + log (ηE[πp,1] + (1 − η)E[π1,1])

θ =
log(d) − log(R) − log(τ) + log (ηE[πp,1] + (1 − η)E[π1,1])

− log(βmin)

For a truncated gamma distribution with shape a and scale bwith upper truncation at u, the expected value
is

E[Γ(a, b, u)] =
b [Γ(a+ 1, 0) − Γ(a+ 1, u/b)]

Γ(a, 0) − Γ(a, u/b)
,

where Γ is the upper incomplete gamma function. See Okasha and Alqanoo (2014) [eq.29]57 for the full383

derivation.384

Letting γ be the lower incomplete gamma function, it follows that

E[πp,1] =
R0/k [Γ(kτ/d+ 1, 0) − Γ(kτ/d+ 1, uk/R0)]

Γ(kτ/d, 0) − Γ(kτ/d, uk/R0)

=
R0/k [γ(kτ/d+ 1, uk/R0)]

γ(kτ/d, uk/R0)

where u is the p-th percentile of π 57. Then

θ =
log(d) − log(R) − log(τ) + log

(
ηR0/k[γ(kτ/d+1,uk/R0)]

γ(kτ/d,uk/R0)
+ (1 − η)R0τ

d

)
− log(βmin)

.

385
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Figure S1: Epidemiological model box diagram
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Figure S2: Many other truncation interventions are viable alternatives to the top 0.5% with 75% efficiency presented
in the main text including: truncating the top 1% with 50% efficiency (purple) and top 0.3% with 100% efficiency (red).
Bands show 95% CI on stochastic simulations of daily cases and deaths for the single maximum likelihood estimate.
Dates range from February 2020 to October 2020.
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Figure S3: Expanded view of truncating the upper 0.1% of the individual level time step transmission rate distribution
(π) at a four-hour time step (A). This truncation leads to a reduction of the mean and variance for an individual’s
infectious period reproduction potential (B). As the number of infected individuals in the population increases from
10 (C, D) to 1000 (E, F), the variance in decreases in both the population-level average transmission rate during each
4-hour period (C, E) and over the lifetime of those infected (D, F).
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Figure S4: The proportion of epidemic simulations that went extinct (A) and the upper 99th percentile of the number
concurrent infected after 42 days (B) for the resurgent simulations among 5000 total simulations for increasing trun-
cation proportions of π. Shelter-in-place is scaled so that transmission rate at the time of intervention relaxation is
identical across intervention scenarios and would result in RE = 2 in a fully susceptible population.
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B. 1 geometrically distributed infection period
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C. 7 geometrically distributed infection periods
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Figure S5: The distribution of individual lifetime reproduction (R) when modeled as a Gamma distribution with
a mean of 2.5 and a scale of 0.16 (A). This distribution implicitly assumes a constant infectious duration. Using a
geometrically distributed infectious period with only one period (“box”), and a time period of 4 hours result in an in-
crease in the variance of the individual reproductive distribution relative to assuming a constant infectious period (B).
Breaking the infectious period into 7 sub-stages (boxes) reduces the variance, though the variance remains marginally
higher than when assuming a constant infectious period (C).
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